Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMJ Open Diabetes Res Care ; 12(2)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453236

RESUMO

INTRODUCTION: Colonocyte oxidation of bacterial-derived butyrate has been reported to maintain synergistic obligate anaerobe populations by reducing colonocyte oxygen levels; however, it is not known whether this process is disrupted during the progression of type 2 diabetes. Our aim was to determine whether diabetes influences colonocyte oxygen levels in the University of California Davis type 2 diabetes mellitus (UCD-T2DM) rat model. RESEARCH DESIGN AND METHODS: Age-matched male UCD-T2DM rats (174±4 days) prior to the onset of diabetes (PD, n=15), within 1 month post-onset (RD, n=12), and 3 months post-onset (D3M, n=12) were included in this study. Rats were administered an intraperitoneal injection of pimonidazole (60 mg/kg body weight) 1 hour prior to euthanasia and tissue collection to estimate colonic oxygen levels. Colon tissue was fixed in 10% formalin, embedded in paraffin, and processed for immunohistochemical detection of pimonidazole. The colonic microbiome was assessed by 16S gene rRNA amplicon sequencing and content of short-chain fatty acids was measured by liquid chromatography-mass spectrometry. RESULTS: HbA1c % increased linearly across the PD (5.9±0.1), RD (7.6±0.4), and D3M (11.5±0.6) groups, confirming the progression of diabetes in this cohort. D3M rats had a 2.5% increase in known facultative anaerobes, Escherichia-Shigella, and Streptococcus (false discovery rate <0.05) genera in colon contents. The intensity of pimonidazole staining of colonic epithelia did not differ across groups (p=0.37). Colon content concentrations of acetate and propionate also did not differ across UCD-T2DM groups; however, colonic butyric acid levels were higher in D3M rats relative to PD rats (p<0.01). CONCLUSIONS: The advancement of diabetes in UCD-T2DM rats was associated with an increase in facultative anaerobes; however, this was not explained by changes in colonocyte oxygen levels. The mechanisms underlying shifts in gut microbe populations associated with the progression of diabetes in the UCD-T2DM rat model remain to be identified.


Assuntos
Diabetes Mellitus Tipo 2 , Nitroimidazóis , Humanos , Ratos , Masculino , Animais , Recém-Nascido , Hipóxia , Oxigênio
2.
Clin Sci (Lond) ; 138(3): 117-134, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38261523

RESUMO

In preterm neonates unable to obtain sufficient oral nutrition, intravenous lipid emulsion is life-saving. The contribution of post-conceptional level of maturation to pathology that some neonates experience is difficult to untangle from the global pathophysiology of premature birth. In the present study, we determined fetal physiological responses to intravenous lipid emulsion. Fetal sheep were given intravenous Intralipid 20® (n = 4 females, 7 males) or Lactated Ringer's Solution (n = 7 females, 4 males) between 125 ± 1 and 133 ± 1 d of gestation (term = 147 d). Manufacturer's recommendation for premature human infants was followed: 0.5-1 g/kg/d initial rate, increased by 0.5-1 to 3 g/kg/d. Hemodynamic parameters and arterial blood chemistry were measured, and organs were studied postmortem. Red blood cell lipidomics were analyzed by LC-MS. Intravenous Intralipid did not alter hemodynamic or most blood parameters. Compared with controls, Intralipid infusion increased final day plasma protein (P=0.004; 3.5 ± 0.3 vs. 3.9 ± 0.2 g/dL), albumin (P = 0.031; 2.2 ± 0.1 vs. 2.4 ± 0.2 g/dL), and bilirubin (P<0.001; conjugated: 0.2 ± 0.1 vs. 0.6 ± 0.2 mg/dL; unconjugated: 0.2 ± 0.1 vs. 1.1 ± 0.4 mg/dL). Circulating IGF-1 decreased following Intralipid infusion (P<0.001; 66 ± 24 vs. 46 ± 24 ng/mL). Compared with control Oil Red O liver stains (median score 0), Intralipid-infused fetuses scored 108 (P=0.0009). Lipidomic analysis revealed uptake and processing of infused lipids into red blood cells, increasing abundance of saturated fatty acids. The near-term fetal sheep tolerates intravenous lipid emulsion well, although lipid accumulates in the liver. Increased levels of unconjugated bilirubin may reflect increased red blood cell turnover or impaired placental clearance. Whether Intralipid is less well tolerated earlier in gestation remains to be determined.


Assuntos
Emulsões Gordurosas Intravenosas , Placenta , Recém-Nascido , Lactente , Masculino , Humanos , Feminino , Animais , Gravidez , Ovinos , Recém-Nascido Prematuro , Bilirrubina , Feto
3.
Physiol Genomics ; 56(2): 145-157, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38009224

RESUMO

High cardiorespiratory fitness (CRF) is associated with a reduced risk of metabolic disease and is linked to superior mitochondrial respiratory function. This study investigated how intrinsic CRF affects bioenergetics and metabolic health in adulthood and early life. Adult rats selectively bred for low and high running capacity [low capacity runners (LCR) and high capacity runners (HCR), respectively] underwent metabolic phenotyping before mating. Weanlings were evaluated at 4-6 wk of age, and whole body energetics and behavior were assessed using metabolic cages. Mitochondrial respiratory function was assessed in permeabilized tissues through high-resolution respirometry. Proteomic signatures of adult and weanling tissues were determined using mass spectrometry. The adult HCR group exhibited lower body mass, improved glucose tolerance, and greater physical activity compared with the LCR group. The adult HCR group demonstrated higher mitochondrial respiratory capacities in the soleus and heart compared with the adult LCR group, which coincided with a greater abundance of proteins involved in lipid catabolism. HCR and LCR weanlings had similar body mass, but HCR weanlings displayed reduced adiposity. In addition, HCR weanlings exhibited better glucose tolerance and higher physical activity levels than LCR weanlings. Higher respiratory capacities were observed in the soleus, heart, and liver tissues of HCR weanlings compared with LCR weanlings, which were not owed to greater mitochondrial content. Proteomic analyses indicated a greater potential for lipid oxidation in the contractile muscles of HCR weanlings. In conclusion, offspring born to parents with high CRF possess an enhanced capacity for lipid catabolism and oxidative phosphorylation, thereby influencing metabolic health. These findings highlight that intrinsic CRF shapes the bioenergetic phenotype with implications for metabolic resilience in early life.NEW & NOTEWORTHY Inherited cardiorespiratory fitness (CRF) influences early life bioenergetics and metabolic health. Higher intrinsic CRF was associated with reduced adiposity and improved glucose tolerance in early life. This metabolic phenotype was accompanied by greater mitochondrial respiratory capacity in skeletal muscle, heart, and liver tissue. Proteomic profiling of these three tissues further revealed potential mechanisms linking inherited CRF to early life metabolism.


Assuntos
Aptidão Cardiorrespiratória , Condicionamento Físico Animal , Ratos , Animais , Proteômica , Fígado/metabolismo , Lipídeos , Glucose/metabolismo , Condicionamento Físico Animal/fisiologia
4.
Physiol Rep ; 11(6): e15638, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36945966

RESUMO

Regular, moderate exercise modifies the gut microbiome and contributes to human metabolic and immune health. The microbiome may exert influence on host physiology through the microbial production and modification of metabolites (xenometabolites); however, this has not been extensively explored. We hypothesized that 6 weeks of supervised, aerobic exercise 3×/week (60%-75% heart rate reserve [HRR], 30-60 min) in previously sedentary, lean (n = 14) and obese (n = 10) adults would modify both the fecal and serum xenometabolome. Serum and fecal samples were collected pre- and post-6 week intervention and analyzed by liquid chromatography/tandem mass spectrometry (LC-MS/MS). Linear mixed models (LMMs) identified multiple fecal and serum xenometabolites responsive to exercise training. Further cluster and pathway analysis revealed that the most prominent xenometabolic shifts occurred within aromatic amino acid (ArAA) metabolic pathways. Fecal and serum ArAA derivatives correlated with body composition (lean mass), markers of insulin sensitivity (insulin, HOMA-IR) and cardiorespiratory fitness ( V ̇ O 2 max $$ \dot{\mathrm{V}}{\mathrm{O}}_{2\max } $$ ), both at baseline and in response to exercise training. Two serum aromatic microbial-derived amino acid metabolites that were upregulated following the exercise intervention, indole-3-lactic acid (ILA: fold change: 1.2, FDR p < 0.05) and 4-hydroxyphenyllactic acid (4-HPLA: fold change: 1.3, FDR p < 0.05), share metabolic pathways within the microbiota and were associated with body composition and markers of insulin sensitivity at baseline and in response to training. These data provide evidence of physiologically relevant shifts in microbial metabolism that occur in response to exercise training, and reinforce the view that host metabolic health influences gut microbiota population and function. Future studies should consider the microbiome and xenometabolome when investigating the health benefits of exercise.


Assuntos
Resistência à Insulina , Adulto , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Obesidade/metabolismo , Exercício Físico/fisiologia
5.
Nutrients ; 15(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36678256

RESUMO

A controlled-neonatal piglet trial was conducted to evaluate the impact of a plant-based infant formula containing buckwheat and almonds as the main source of protein compared to a commercially available dairy-based formula on the gut health parameters. Two day old piglets were fed either a plant-based or a dairy-based formula until day 21. Gut microbiome, cytokines, growth and metabolism related outcomes, and intestinal morphology were evaluated to determine the safety of the plant-based infant formula. This study reported that the plant-based formula-fed piglets had a similar intestinal microbiota composition relative to the dairy-based formula-fed group. However, differential abundance of specific microbiota species was detected within each diet group in the small and large intestinal regions and fecal samples. Lactobacillus delbrueckii, Lactobacillus crispatus, and Fusobacterium sp. had higher abundance in the small intestine of plant-based formula-fed piglets compared to the dairy-based group. Bacteroides nordii, Enterococcus sp., Lactobacillus crispatus, Prevotella sp., Ruminococcus lactaris, Bacteroides nordii, Eisenbergiella sp., Lactobacillus crispatus, Prevotella sp., and Akkermansia muciniphila had greater abundance in the large intestine of the plant based diet fed piglets relative to the dairy-based diet group. In the feces, Clostridiales, Bacteroides uniformis, Butyricimonasvirosa, Cloacibacillus porcorum, Clostridium clostridioforme, and Fusobacterium sp. were abundant in dairy-based group relative to the plant-based group. Lachnospiraceae, Clostridium scindens, Lactobacillus coleohominis, and Prevetolla sp. had greater abundance in the feces of the plant-based group in comparison to the dairy-based group. Gut morphology was similar between the plant and the dairy-based formula-fed piglets. Circulatory cytokines, magnesium, triiodothyronine (T3), thyroxine (T4), thyroid stimulating hormone (TSH), vitamin D, vitamin K, and IgE levels were similar among all piglets independent of dietary group. Overall, the present study demonstrated that a plant-based formula with buckwheat and almonds as the primary source of protein can support similar gut microbiota growth and health outcomes compared to a dairy-based infant formula.


Assuntos
Fagopyrum , Microbioma Gastrointestinal , Prunus dulcis , Animais , Animais Recém-Nascidos , Biomarcadores , Citocinas/metabolismo , Fórmulas Infantis , Intestino Delgado/metabolismo , Suínos
6.
Brain Sci ; 12(9)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36138929

RESUMO

The objective of this study was to investigate the effect of dietary fatty acid (FA) saturation and carbon chain length on brain bile acid (BA) metabolism and neuronal number in a pig model of pediatric NAFLD. Thirty 20-day-old Iberian pigs, pair-housed in pens, were randomly assigned to receive one of three hypercaloric diets for 10 weeks: (1) lard-enriched (LAR; n = 5 pens), (2) olive-oil-enriched (OLI, n = 5), and (3) coconut-oil-enriched (COC; n = 5). Pig behavior and activity were analyzed throughout the study. All animals were euthanized on week 10 and frontal cortex (FC) samples were collected for immunohistochemistry, metabolomic, and transcriptomic analyses. Data were analyzed by multivariate and univariate statistics. No differences were observed in relative brain weight, neuronal number, or cognitive functioning between diets. Pig activity and FC levels of neuroprotective secondary BAs and betaine decreased in the COC and OLI groups compared with LAR, and paralleled the severity of NAFLD. In addition, OLI-fed pigs showed downregulation of genes involved in neurotransmission, synaptic transmission, and nervous tissue development. Similarly, COC-fed pigs showed upregulation of neurogenesis and myelin repair genes, which caused the accumulation of medium-chain acylcarnitines in brain tissue. In conclusion, our results indicate that secondary BA levels in the FCs of NAFLD pigs are affected by dietary FA composition and are associated with metabolic and transcriptomic markers of brain injury. Dietary interventions that aim to replace saturated FAs by medium-chain or monounsaturated FAs in high-fat hypercaloric diets may have a negative effect on brain health in NAFLD patients.

7.
Am J Physiol Endocrinol Metab ; 323(3): E187-E206, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35858244

RESUMO

The objective of this study was to investigate the effect of dietary fatty acid (FA) composition on bile acid (BA) metabolism in a pig model of NAFLD, by using a multiomics approach combined with histology and serum biochemistry. Thirty 20-day-old Iberian pigs pair-housed in pens were randomly assigned to receive 1 of 3 hypercaloric diets for 10 wk: 1) lard-enriched (LAR; n = 5 pens), 2) olive oil-enriched (OLI; n = 5), and 3) coconut oil-enriched (COC; n = 5). Animals were euthanized on week 10 after blood sampling, and liver, colon, and distal ileum (DI) were collected for histology, metabolomics, and transcriptomics. Data were analyzed by multivariate and univariate statistics. Compared with OLI and LAR, COC increased primary and secondary BAs in liver, plasma, and colon. In addition, both COC and OLI reduced circulating fibroblast growth factor 19, increased hepatic necrosis, composite lesion score, and liver enzymes in serum, and upregulated genes involved in hepatocyte proliferation and DNA repair. The severity of liver disease in COC and OLI pigs was associated with increased levels of phosphatidylcholines, medium-chain triacylglycerides, trimethylamine-N-oxide, and long-chain acylcarnitines in the liver, and the expression of profibrotic markers in DI, but not with changes in the composition or size of BA pool. In conclusion, our results indicate a role of dietary FAs in the regulation of BA metabolism and progression of NAFLD. Interventions that aim to modify the composition of dietary FAs, rather than to regulate BA metabolism or signaling, may be more effective in the treatment of NAFLD.NEW & NOTEWORTHY Bile acid homeostasis and signaling is disrupted in NAFLD and may play a central role in the development of the disease. However, there are no studies addressing the impact of diet on bile acid metabolism in patients with NAFLD. In juvenile Iberian pigs, we show that fatty acid composition in high-fat high-fructose diets affects BA levels in liver, plasma, and colon but these changes were not associated with the severity of the disease.


Assuntos
Ácidos e Sais Biliares , Gorduras na Dieta , Fígado , Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica , Ácidos Graxos , Humanos , Modelos Animais , Suínos
8.
Physiol Rep ; 10(13): e15363, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35778808

RESUMO

In humans and animal models, Cesarean section (C-section) has been associated with alterations in the taxonomic structure of the gut microbiome. These changes in microbiota populations are hypothesized to impact immune, metabolic, and behavioral/neurologic systems and others. It is not clear if birth mode inherently changes the microbiome, or if C-section effects are context-specific and involve interactions with environmental and other factors. To address this and control for potential confounders, cecal microbiota from ~3 week old mice born by C-section (n = 16) versus natural birth (n = 23) were compared under matched conditions for housing, cross-fostering, diet, sex, and genetic strain. A total of 601 unique species were detected across all samples. Alpha diversity richness (i.e., how many species within sample; Chao1) and evenness/dominance (i.e., Shannon, Simpson, Inverse Simpson) metrics revealed no significant differences by birth mode. Beta diversity (i.e., differences between samples), as estimated with Bray-Curtis dissimilarities and Aitchison distances (using log[x + 1]-transformed counts), was also not significantly different (Permutational Multivariate ANOVA [PERMANOVA]). Only the abundance of Lachnoclostridium [Clostridium] scindens was found to differ using a combination of statistical methods (ALDEx2, DESeq2), being significantly higher in C-section mice. This microbe has been implicated in secondary bile acid production and regulation of glucocorticoid metabolism to androgens. From our results and the extant literature we conclude that C-section does not inherently lead to large-scale shifts in gut microbiota populations, but birth mode could modulate select bacteria in a context-specific manner: For example, involving factors associated with pre-, peri-, and postpartum environments, diet or host genetics.


Assuntos
Ácidos e Sais Biliares , Cesárea , Animais , Ceco , Clostridium , Feminino , Glucocorticoides , Camundongos , Gravidez
9.
J Nutr Biochem ; 107: 109065, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35609848

RESUMO

Enteric infections are widespread in infants and children living in low-resource settings. Iron availability in the gastrointestinal tract may modify the gut microbiome and impact the incidence and severity of enteropathy. This study was designed to determine the effect of an iron-deplete compared to an iron-rich environment in the lower intestine on the gut microbiome, and whether iron availability in the lower intestine affects the host immune response and severity of enteric infection in young mice. Weanling C57BL/6 female mice were fed an iron deficient (Fe-, <6 ppm iron) or an iron fortified (Fe+, 300 ppm iron) diet for 6 weeks. Mice were pretreated with streptomycin prior to oral inoculation of Salmonella enterica subspecies enterica serovar Typhimurium to induce enteric infection (Sal+) or saline control (Sal-). Cecal iron concentrations were 55-fold greater with Fe+Sal- compared to Fe-Sal-. Microbiome sequencing revealed shifts in gut microbiota with dietary iron and enteric infection. There was ∼30% more S. Typhimurium in the cecum of Fe+Sal+ compared to Fe-Sal+. Plasma hepcidin increased with dietary iron and enteric infection, but was greatest in Fe+Sal+. Plasma lipocalin-2 and spleen size relative to bodyweight were greater in Fe+Sal+ compared to Fe+Sal-, Fe-Sal- and Fe-Sal+, and Fe+Sal+ lost more bodyweight compared to Fe-Sal+. Unabsorbed iron in the lower intestine modifies the gut microbiome and promotes a more severe enteropathy. These findings could suggest the need for alternative iron supplementation strategies in areas where enteric infection are common.


Assuntos
Enterocolite , Microbioma Gastrointestinal , Animais , Dieta , Modelos Animais de Doenças , Feminino , Humanos , Ferro , Ferro da Dieta , Camundongos , Camundongos Endogâmicos C57BL , Salmonella typhimurium
10.
Am J Physiol Endocrinol Metab ; 322(6): E540-E550, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35466692

RESUMO

Maternal obesity [body mass index (BMI) > 30 kg/m2] is associated with greater neonatal adiposity, cord blood (CB) insulin levels, and a proinflammatory phenotype at birth, contributing to risk of future cardiometabolic disease in the offspring. Variation in neonatal adiposity within maternal BMI groups is underappreciated, and it remains unclear whether the metabolic impairments at birth are an outcome of maternal obesity or excess fetal fat accrual. We examined the hypothesis that CB metabolites associated with fetal fat accrual differ between offspring of normal-weight and obese women. Umbilical venous blood was collected at the time of scheduled cesarean delivery from 50 normal-weight women (LE; pregravid BMI = 22.3 ± 1.7 kg/m2) and 50 obese women (OB; BMI = 34.5 ± 3.0 kg/m2). Neonatal adiposity was estimated from flank skinfold thickness. The first (low adiposity, LA) and third (high adiposity, HA) tertiles of neonatal %body fat were used to create four groups: OBLA, OBHA, LELA, and LEHA. CB metabolites were measured via untargeted metabolomics. Broadly, the LA offspring of OB women (OBLA) metabolite signature differed from other groups. Lauric acid (C12:0) was 82-118% higher in OBLA vs. all other groups [false discovery rate (FDR) < 0.01]. Several other fatty acids, including palmitate, stearate, and linoleate, were higher in OBLA vs. OBHA groups. CB metabolites, such as lauric acid, a medium-chain fatty acid that may improve insulin sensitivity, were associated with neonatal adiposity differently between offspring of women with and without obesity. Changes in metabolically active lipids at birth may have long-term consequences for offspring metabolism.NEW & NOTEWORTHY Using untargeted metabolomics in 100 newborns, we found that cord blood metabolite signatures associated with neonatal adiposity differed between offspring of women with and without obesity.


Assuntos
Adiposidade , Obesidade Materna , Peso ao Nascer , Índice de Massa Corporal , Feminino , Humanos , Recém-Nascido , Ácidos Láuricos , Metabolômica , Obesidade/metabolismo , Gravidez
11.
Pediatr Obes ; 17(9): e12921, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35478493

RESUMO

BACKGROUND: Maternal obesity is an important determinant of offspring obesity risk, which may be mediated via changes in the infant microbiome. OBJECTIVES: We examined infant faecal microbiome, short-chain fatty acids (SCFA), and maternal human milk oligosaccharides (HMO) in mothers with overweight/obese body mass index (BMI) (OW) compared with normal weight (NW) (Clinicaltrials.gov NCT01131117). METHODS: Infant stool samples at 1, 6, and 12 months were analysed by 16S rRNA sequencing. Maternal (BODPOD) and infant (quantitative nuclear magnetic resonance [QMR]) adiposity were measured. HMOs at 2 months postpartum and faecal SCFAs at 1 month were also assessed. Statistical analyses included multivariable and mixed linear models for assessment of microbiome diversity, composition, and associations of taxonomic abundance with metabolic and anthropometric variables. RESULTS: At 1 month, offspring of women with obesity had lower abundance of SCFA-producing bacteria (including Ruminococcus and Turicibacter) and lower faecal butyric acid levels. Lachnospiraceae abundance was lower in OW group at 6 months, and infant fat mass was negatively associated with the levels of Sutterella. Gradient boosting machine models indicated that higher α-diversity and specific microbial taxa at 1 month predicted elevated adiposity at 12 months with overall accuracy of 76.5%. Associations between maternal HMO concentrations and infant bacterial taxa differed between NW and OW groups. CONCLUSIONS: Elevated maternal BMI is associated with relative depletion of butyrate-producing microbes and faecal butyrate in the early infant faecal microbiome. Overall microbial richness may aid in prediction of elevated adiposity in later infancy.


Assuntos
Microbioma Gastrointestinal , Obesidade Materna , Bactérias/genética , Butiratos , Feminino , Microbioma Gastrointestinal/genética , Humanos , Lactente , Leite Humano/metabolismo , Obesidade/epidemiologia , Obesidade/metabolismo , Oligossacarídeos , Gravidez , RNA Ribossômico 16S
12.
Mol Nutr Food Res ; 66(8): e2100784, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35120277

RESUMO

SCOPE: In diabetes, endothelial inflammation and dysfunction play a pivotal role in the development of vascular disease. This study investigates the effect of dietary blueberries on vascular complications and gut microbiome in diabetic mice. METHODS AND RESULTS: Seven-week-old diabetic db/db mice consume a standard diet (db/db) or a diet supplemented with 3.8% freeze-dried blueberry (db/db+BB) for 10 weeks. Control db/+ mice are fed a standard diet (db/+). Vascular inflammation is assessed by measuring monocyte binding to vasculature and inflammatory markers. Isometric tension procedures are used to assess mesenteric artery function. db/db mice exhibit enhanced vascular inflammation and reduced endothelial-dependent vasorelaxation as compared to db/+ mice, but these are improved in db/db+BB mice. Blueberry supplementation reduces the expression of NOX4 and IκKß in the aortic vessel and vascular endothelial cells (ECs) isolated from db/db+BB compared to db/db mice. The blueberry metabolites serum reduces glucose and palmitate induced endothelial inflammation in mouse aortic ECs. Further, blueberry supplementation increases commensal microbes and modulates the functional potential of gut microbes in diabetic mice. CONCLUSION: Dietary blueberry suppresses vascular inflammation, attenuates arterial endothelial dysfunction, and supports the growth of commensal microbes in diabetic mice. The endothelial-specific vascular benefits of blueberries are mediated through NOX4 signaling.


Assuntos
Mirtilos Azuis (Planta) , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Angiopatias Diabéticas , Microbioma Gastrointestinal , NADPH Oxidase 4 , Animais , Diabetes Mellitus Experimental/dietoterapia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/microbiologia , Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Angiopatias Diabéticas/dietoterapia , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/microbiologia , Dieta , Células Endoteliais/metabolismo , Endotélio Vascular , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , NADPH Oxidase 4/metabolismo
13.
Physiol Rep ; 9(22): e15102, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34806320

RESUMO

Deterioration in glucose homeostasis has been associated with intestinal dysbiosis, but it is not known how metabolic dysregulation alters the gastrointestinal environment. We investigated how the progression of diabetes alters ileal and colonic epithelial mucosal structure, microbial abundance, and transcript expression in the University of California Davis Type 2 Diabetes Mellitus (UCD-T2DM) rat model. Male UCD-T2DM rats (age ~170 days) were included if <1-month (n = 6, D1M) or 3-month (n = 6, D3M) post-onset of diabetes. Younger nondiabetic UCD-T2DM rats were included as a nondiabetic comparison (n = 6, ND, age ~70 days). Ileum villi height/crypt depths and colon crypt depths were assessed by histology. Microbial abundance of colon content was measured with 16S rRNA sequencing. Ileum and colon transcriptional abundances were analyzed using RNA sequencing. Ileum villi height and crypt depth were greater in D3M rats compared to ND. Colon crypt depth was greatest in D3M rats compared to both ND and D1M rats. Colon abundances of Akkermansia and Muribaculaceae were lower in D3M rats relative to D1M, while Oscillospirales, Phascolarctobacterium, and an unidentified genus of Lachnospiraceae were higher. Only two transcripts were altered by diabetes advancement within the colon; however, 2039 ileal transcripts were altered. Only colonic abundances of Sptlc3, Enpp7, Slc7a15, and Kctd14 had more than twofold changes between D1M and D3M rats. The advancement of diabetes in the UCD-T2DM rat results in a trophic effect on the mucosal epithelia and was associated with regulation of gastrointestinal tract RNA expression, which appears more pronounced in the ileum relative to the colon.


Assuntos
Colo/metabolismo , Diabetes Mellitus Tipo 2/genética , Microbioma Gastrointestinal/genética , Íleo/metabolismo , Mucosa Intestinal/metabolismo , Akkermansia , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Clostridiales , Colo/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/patologia , Progressão da Doença , Disbiose/genética , Disbiose/metabolismo , Disbiose/microbiologia , Disbiose/patologia , Perfilação da Expressão Gênica , Íleo/patologia , Mucosa Intestinal/patologia , Canais de Potássio/genética , RNA Ribossômico 16S , Ratos , Serina C-Palmitoiltransferase/genética , Esfingomielina Fosfodiesterase/genética , Veillonellaceae
14.
Nutrients ; 13(9)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34579172

RESUMO

Maternal body composition, gestational weight gain (GWG) and diet quality influence offspring obesity risk. While the gut microbiome is thought to play a crucial role, it is understudied in pregnancy. Using a longitudinal pregnancy cohort, maternal anthropometrics, body composition, fecal microbiome and dietary intake were assessed at 12, 24 and 36 weeks of gestation. Fecal samples (n = 101, 98 and 107, at each trimester, respectively) were utilized for microbiome analysis via 16S rRNA amplicon sequencing. Data analysis included alpha- and beta-diversity measures and assessment of compositional changes using MaAsLin2. Correlation analyses of serum metabolic and anthropometric markers were performed against bacterial abundance and predicted functional pathways. α-diversity was unaltered by pregnancy stage or maternal obesity status. Actinobacteria, Lachnospiraceae, Akkermansia, Bifidobacterium, Streptococcus and Anaerotuncus abundances were associated with gestation stage. Maternal obesity status was associated with increased abundance of Lachnospiraceae, Bilophila, Dialister and Roseburia. Maternal BMI, fat mass, triglyceride and insulin levels were positively associated with Bilophila. Correlations of bacterial abundance with diet intake showed that Ruminococcus and Paraprevotella were associated with total fat and unsaturated fatty acid intake, while Collinsella and Anaerostipes were associated with protein intake. While causal relationships remain unclear, collectively, these findings indicate pregnancy- and maternal obesity-dependent interactions between dietary factors and the maternal gut microbiome.


Assuntos
Composição Corporal , Dieta , Microbioma Gastrointestinal , Fenômenos Fisiológicos da Nutrição Materna , Adulto , Composição Corporal/fisiologia , Peso Corporal , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Ganho de Peso na Gestação/fisiologia , Humanos , Gravidez , RNA Ribossômico 16S/genética
15.
J Nutr ; 151(1): 245-254, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33245130

RESUMO

BACKGROUND: Inclusion of dairy in diet patterns has been shown to have mixed effects on weight loss. A prevailing hypothesis is that dairy improves weight loss by influencing endocrine systems associated with satiety and food intake regulation. OBJECTIVES: The objective of the current study was to evaluate the effect of weight loss with or without adequate dietary dairy on subjective and objective appetitive measures. METHODS: Men and women who were habitual low dairy consumers (n = 65, 20-50 y) participated in a 12-wk randomized controlled feeding weight loss trial. During the 12-wk intervention, a low-dairy (<1 serving dairy/d) was compared with an adequate-dairy (3-4 servings dairy/d) diet, both with a 500-kcal deficit/d. Test days, before and at the end of the intervention, began with 2 fasting blood draws and visual analog scale (VAS) measures, followed by a standard breakfast (25% of prescribed restricted calories), 5 postbreakfast blood draws and VASs, a standard lunch (40% of restricted energy amount), and 12 postlunch blood draws and VASs. Blood samples were used for satiety hormone measurements. On a separate day when matching standard meals were consumed, an ad libitum buffet meal was provided as dinner, at a self-selected time. Meal duration and intermeal interval were recorded. RESULTS: Weight loss (-6.1 kg), irrespective of dairy, resulted in reduced fasting insulin (-20%) and leptin (-25%), and increased fasting acylated ghrelin (+25%) and VAS desire to eat (+18%) (P < 0.05). There were no effects of dairy on objective or subjective satiety measures. Weight loss marginally reduced the intermeal interval (289 min compared with 276 min, P = 0.059) between lunch and the ad libitum buffet. CONCLUSIONS: These results do not support the hypothesis that inclusion of dairy in long-term dietary patterns influences appetite during weight loss. Weight loss per se has a modest impact on select systems that regulate hunger and satiety.This trial was registered at clinicaltrials.gov as NCT00858312.


Assuntos
Laticínios , Dieta , Trato Gastrointestinal/metabolismo , Período Pós-Prandial , Resposta de Saciedade , Redução de Peso , Adulto , Feminino , Grelina/metabolismo , Humanos , Insulina/metabolismo , Leptina/metabolismo , Masculino , Pessoa de Meia-Idade , Adulto Jovem
16.
Amino Acids ; 52(9): 1319-1335, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32974749

RESUMO

When neonatal pigs continuously fed formula are supplemented with leucine pulses, muscle protein synthesis and body weight gain are enhanced. To identify the responsible mechanisms, we combined plasma metabolomic analysis with transcriptome expression of the transcriptome and protein catabolic pathways in skeletal muscle. Piglets (n = 23, 7-day-old) were fed continuously a milk replacement formula via orogastric tube for 21 days with an additional parenteral infusion (800 µmol kg-1 h-1) of either leucine (LEU) or alanine (CON) for 1 h every 4 h. Plasma metabolites were measured by liquid chromatography-mass spectrometry. Gene and protein expression analyses of longissimus dorsi muscle were performed by RNA-seq and Western blot, respectively. Compared with CON, LEU pigs had increased plasma levels of leucine-derived metabolites, including 4-methyl-2-oxopentanoate, beta-hydroxyisovalerate, ß-hydroxyisovalerylcarnitine, and 3-methylglutaconate (P ≤ 0.05). Leucine pulses downregulated transcripts enriched in the Kyoto Encyclopedia of Genes and Genomes terms "spliceosome," "GAP junction," "endocytosis," "ECM-receptor interaction," and "DNA replication". Significant correlations were identified between metabolites derived from leucine catabolism and muscle genes involved in protein degradation, transcription and translation, and muscle maintenance and development (P ≤ 0.05). Further, leucine pulses decreased protein expression of autophagic markers and serine/threonine kinase 4, involved in muscle atrophy (P ≤ 0.01). In conclusion, results from our studies support the notion that leucine pulses during continuous enteral feeding enhance muscle mass gain in neonatal pigs by increasing protein synthetic activity and downregulating protein catabolic pathways through concerted responses in the transcriptome and metabolome.


Assuntos
Suplementos Nutricionais , Leucina/farmacologia , Metaboloma/efeitos dos fármacos , Proteínas Musculares/metabolismo , Músculo Esquelético/citologia , Atrofia Muscular/patologia , Transcriptoma/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Feminino , Leucina/administração & dosagem , Proteínas Musculares/genética , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Fosforilação , Suínos
17.
Am J Clin Nutr ; 112(5): 1228-1239, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-32844207

RESUMO

BACKGROUND: Human milk composition is altered by maternal obesity. The association between milk metabolites and infant outcomes has not been thoroughly investigated. OBJECTIVES: This study aimed to quantify maternal adiposity-related differences in the human milk metabolome and to identify metabolites associated with infant adiposity during the first 6 mo postpartum using untargeted metabolomics. METHOD: Maternal anthropometrics were assessed ≤14 weeks of gestation. Human milk samples were collected at 0.5 mo (n = 159), 2 mo (n = 131), and 6 mo (n = 94) postpartum from normal weight (NW, BMI = 18.5-24.9 kg/m2) and obese (OB, BMI >30 kg/m2) mothers. GC-time-of-flight-MS was used to identify metabolic signatures that discriminate NW and OB women. Partial least squared (PLS)-discriminant analysis, and PLS-regression models were assessed to examine relations between metabolites and maternal BMI and fat mass. Metabolites altered by maternal obesity were used in linear mixed effect models to predict infant adiposity. RESULTS: Multivariate modeling identified 23, 17, and 10 metabolites that described maternal adiposity indices at 0.5 mo, 2 mo, and 6 mo postpartum, respectively. Monosaccharides and sugar alcohols were the most representative annotated metabolite classes that were increased in milk from OB women and included: mannose, ribose, lyxose, lyxitol (0.5 mo); mannose, ribitol, glycerol, isothreonic acid, lyxitol (2 mo); lyxitol and isothreonic acid (6 mo). Other discriminant metabolites included: 1-monostearin, xylonolactone, shikimic acid, pseudo uridine, and dodecanol (0.5 mo); N-acetyl-D-hexosamine and fumaric acid (2 mo); uric acid and tyrosine (6 mo). Mannose, lyxitol, and shikimic acid predicted higher infant adiposity over the first 6 mo of life. CONCLUSIONS: This study reports on 1 of the largest cohorts to date examining the metabolic profiles in human milk comparing NW and OB women. Maternal adiposity was associated with increased amounts of milk nonglucose monosaccharides. Human milk metabolomics may be useful in predicting infant adiposity. These trials were registered at www.clinicaltrials.gov as NCT01131117 and NCT02125149.


Assuntos
Adiposidade , Leite Humano/química , Monossacarídeos/química , Obesidade/metabolismo , Feminino , Humanos , Lactente , Fenômenos Fisiológicos da Nutrição do Lactente , Metabolômica , Leite Humano/metabolismo , Modelos Biológicos
18.
Am J Physiol Gastrointest Liver Physiol ; 319(2): G133-G141, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32538141

RESUMO

Xenometabolites from microbial and plant sources are thought to confer beneficial as well as deleterious effects on host physiology. Studies determining absorption and tissue uptake of xenometabolites are limited. We utilized a conscious catheterized pig model to evaluate interorgan flux of annotated known and suspected xenometabolites, derivatives, and bile acids. Female pigs (n = 12, 2-3 mo old, 25.6 ± 2.2 kg) had surgically implanted catheters across portal-drained viscera (PDV), splanchnic compartment (SPL), liver, kidney, and hindquarter muscle. Overnight-fasted arterial and venous plasma was collected simultaneously in a conscious state and stored at -80°C. Thawed samples were analyzed by liquid chromatography-mass spectrometry. Plasma flow was determined with para-aminohippuric acid dilution technology and used to calculate net organ balance for each metabolite. Significant organ uptake or release was determined if net balance differed from zero. A total of 48 metabolites were identified in plasma, and 31 of these had at least one tissue with a significant net release or uptake. All bile acids, indole-3-acetic acid, indole-3-arylic acid, and hydrocinnamic acid were released from the intestine and taken up by the liver. Indole-3-carboxaldehyde, p-cresol glucuronide, 4-hydroxyphenyllactic acid, dodecanendioic acid, and phenylacetylglycine were also released from the intestines. Liver or kidney uptake was noted for indole-3-acetylglycine, p-cresol glucuronide, atrolactic acid, and dodecanedioic acid. Indole-3-carboxaldehyde, atrolactic acid, and dodecanedioic acids showed net release from skeletal muscle. The results confirm gastrointestinal origins for several known xenometabolites in an in vivo overnight-fasted conscious pig model, whereas nongut net release of other putative xenometabolites suggests a more complex metabolism.NEW & NOTEWORTHY Xenometabolites from microbe origins influence host health and disease, but absorption and tissue uptake of these metabolites remain speculative. Results herein are the first to demonstrate in vivo organ uptake and release of these metabolites. We used a conscious catheterized pig model to confirm gastrointestinal origins for several xenometabolites (e.g., indolic compounds, 4-hydroxyphenyllactic acid, dodecanendioic acid, and phenylacetylgycine). Liver and kidney were major sites for xenometabolite uptake, likely highlighting liver conjugation metabolism and renal excretion.


Assuntos
Intestinos/fisiologia , Rim/fisiologia , Fígado/metabolismo , Músculo Esquelético/fisiologia , Ácido p-Aminoipúrico/farmacocinética , Animais , Transporte Biológico , Feminino , Fenóis/sangue , Fenóis/metabolismo , Sistema Porta , Suínos , Ácido p-Aminoipúrico/sangue
19.
Am J Physiol Gastrointest Liver Physiol ; 319(2): G157-G169, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32508155

RESUMO

The gut microbiome has the potential to create or modify xenometabolites (i.e., nonhost-derived metabolites) through de novo synthesis or modification of exogenous and endogenous compounds. While there are isolated examples of xenometabolites influencing host health and disease, wide-scale characterization of these metabolites remains limited. We developed a metabolomics platform ("XenoScan") using liquid chromatography-mass spectrometry to characterize a range of known and suspected xenometabolites and their derivatives. This assay currently applies authentic standards for 190 molecules, enriched for metabolites of microbial origin. As a proof-of-principle, we characterized the cecal content xenometabolomics profile in adult male lean Sprague-Dawley (LSD) and University of California, Davis type 2 diabetes mellitus (UCD-T2DM) rats at different stages of diabetes. These results were correlated to specific bacterial species generated via shotgun metagenomic sequencing. UCD-T2DM rats had a unique xenometabolite profile compared with LSD rats, regardless of diabetes status, suggesting that at least some of the variation is associated with host genetics. Furthermore, modeling approaches revealed that several xenometabolites discriminated UCD-T2DM rats at early stages of diabetes versus those at 3 mo postdiabetes onset. Several xenometabolite hubs correlated with specific bacterial species in both LSD and UCD-T2DM rats. For example, indole-3-propionic acid negatively correlated with species within the Oscillibacter genus in UCD-T2DM rats considered to be prediabetic or recently diagnosed diabetic, in contrast to gluconic acid and trimethylamine, which were positively correlated with Oscillibacter species. The application of a xenometabolite-enriched metabolomics assay in relevant milieus will enable rapid identification of a wide variety of gut-derived metabolites, their derivatives, and their potential biochemical origins of xenometabolites in relationship to host gastrointestinal microbial ecology.NEW & NOTEWORTHY We debut a liquid chromatography-mass spectrometry (LC/MS) platform called the XenoScan, which is a metabolomics platform for xenometabolites (nonself-originating metabolites). This assay has 190 in-house standards with the majority enriched for microbe-derived metabolites. As a proof-of-principle, we used the XenoScan to discriminate genetic differences from cecal samples associated with different rat lineages, in addition to characterizing diabetes progression in rat model of type 2 diabetes. Complementing microbial sequencing data with xenometabolites uncovered novel microbial metabolism in targeted organisms.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Microbioma Gastrointestinal/fisiologia , Metabolômica , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Ceco/microbiologia , Masculino , Redes e Vias Metabólicas , Ratos , Ratos Sprague-Dawley
20.
J Diet Suppl ; 17(5): 543-560, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32400224

RESUMO

Cannabidiol (CBD) is the major non-psychotropic phytocannabinoid present in Cannabis sativa. In 2018, Congress designated certain C. sativa plant material as "hemp," thus removing it from the DEA's list of controlled substances. As a result, CBD-containing hemp extracts and other CBD products are now widely available and heavily marketed, yet their FDA regulatory status is still hotly debated. The goal of this study was to investigate the effects of a cannabidiol-rich cannabis extract (CRCE) on the gut microbiome and associated histomorphological and molecular changes in the mouse gut mucosa. Male C57BL6/J mice were gavaged with either 0, 61.5, 184.5, or 615 mg/kg/bw of CRCE in sesame oil for 2 weeks (Mon-Fri). Substantial CRCE-induced increases in the relative abundance of A. muciniphila, a bacterial species currently accepted as probiotic, was observed in fecal samples at all doses. This was paralleled by decreases in the relative abundance of other gut bacterial species. Coincident with the observed changes in gut ecology were multiple pro-inflammatory responses, including increased expression of cytokines and chemokines-Il1ß, Cxcl1, and Cxcl2 in the colon tissue. Furthermore, dramatic increases in the relative abundance of A. muciniphila significantly decreased expression of Muc2-a gene intimately associated with gut integrity. Taken together, these findings raise concerns about the safety of long-term CBD usage and underline the need for additional well-designed studies into its tolerability and efficacy.


Assuntos
Canabidiol/efeitos adversos , Cannabis , Colite/induzido quimicamente , Microbioma Gastrointestinal/efeitos dos fármacos , Extratos Vegetais/efeitos adversos , Akkermansia/efeitos dos fármacos , Animais , Quimiocinas/efeitos dos fármacos , Colo/metabolismo , Citocinas/efeitos dos fármacos , Modelos Animais de Doenças , Mucosa Intestinal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucina-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...